Recentni naučni radovi

2020

  • N. Memić and S. Sadiković, “Maximal operators and characterization of hardy spaces,” Analysis mathematica, vol. 46, iss. 1, p. 119–131, 2020.
    [Bibtex]
    @article{memic2020maximal,
    title={Maximal operators and characterization of Hardy spaces},
    author={Memi{\'c}, N and Sadikovi{\'c}, S},
    journal={Analysis Mathematica},
    volume={46},
    number={1},
    pages={119--131},
    year={2020},
    publisher={Springer}
    }
  • R. Vugdalić, “Examples of group $exp(tA)$ ($t\in \mathbb{R}$) of $2×2$ real matrices in case matrix a depends on some real parameters,” Balkan journal of applied mathematics and informatics, vol. 3, iss. 1, p. 55–62, 2020.
    [Bibtex]
    @article{bjami,
    author = {Ramiz Vugdali{\' c}},
    title = { EXAMPLES OF GROUP $exp(tA)$ ($t\in \mathbb{R}$) OF $2x2$ REAL MATRICES IN
    CASE MATRIX A DEPENDS ON SOME REAL PARAMETERS},
    journal = {Balkan Journal of Applied Mathematics and Informatics},
    volume = {3},
    number = {1},
    year = {2020},
    pages = {55--62},  url =
    {http://js.ugd.edu.mk/index.php/bjami/article/view/3516}
    }
  • R. Vugdalić, “Groups of operators in $\mathbb{C}^2$ determined by some cosine operator functions in $\mathbb{C}^2$,” Balkan journal of applied mathematics and informatics, vol. 3, iss. 1, p. 63–72, 2020.
    [Bibtex]
    @article{bjami,
    author = {Ramiz Vugdali{\' c}},
    title = { GROUPS OF OPERATORS IN $\mathbb{C}^2$ DETERMINED BY SOME COSINE OPERATOR
    FUNCTIONS IN $\mathbb{C}^2$},
    journal = {Balkan Journal of Applied Mathematics and Informatics},
    volume = {3},
    number = {1},
    year = {2020},
    pages = {63--72},
    url ={http://js.ugd.edu.mk/index.php/bjami/article/view/3517}
    }
  • M. Garić-Demirović, S. Moranjkić, M. Nurkanović, and Z. Nurkanović, “Stability, neimark–sacker bifurcation, and approximation of the invariant curve of certain homogeneous second-order fractional difference equation,” Discrete dynamics in nature and society, vol. 2020, 2020.
    [Bibtex]
    @article{garic2020stability,
    title={Stability, Neimark--Sacker Bifurcation, and Approximation of the Invariant Curve of Certain Homogeneous Second-Order Fractional Difference Equation},
    author={Gari{\'c}-Demirovi{\'c}, Mirela and Moranjki{\'c}, Samra and Nurkanovi{\'c}, Mehmed and Nurkanovi{\'c}, Zehra},
    journal={Discrete Dynamics in Nature and Society},
    volume={2020},
    year={2020},
    publisher={Hindawi}
    }
  • A. Rekić-Vuković and N. Okičić, “Another look at the continuity of moduli of noncompact convexity,” Palestine journal of mathematics, vol. 9, iss. 2, p. 771–778, 2020.
    [Bibtex]
    @article{rekic2019another,
    title={ANOTHER LOOK AT THE CONTINUITY OF MODULI OF
    NONCOMPACT CONVEXITY},
    author={Reki{\'c}-Vukovi{\' c}, Amra and Oki{\v{c}}i{\'c}, Nermin},
    journal={Palestine Journal of Mathematics},
    volume={9},
    number={2},
    pages={771--778},
    year={2020}
    }

2019

  • M. Kulenovic, M. Nurkanovic, and Z. Nurkanovic, “Global dynamics of certain mix monotone difference equation via center manifold theory and theory of monotone maps,” Sarajevo j. math., vol. 15, iss. 2, p. 129–154, 2019.
    [Bibtex]
    @article{kulenovic2019global,
    title={Global dynamics of certain mix monotone difference equation via center manifold theory and theory of monotone maps},
    author={Kulenovic, MRS and Nurkanovic, M and Nurkanovic, Z},
    journal={Sarajevo J. Math.},
    volume={15},
    number={2},
    pages={129--154},
    year={2019}
    }
  • T. F. Ibrahim and Z. Nurkanović, “Kolmogorov-arnold-moser theory and symmetries for a polynomial quadratic second order difference equation,” Mathematics, vol. 7, iss. 9, p. 790, 2019.
    [Bibtex]
    @article{ibrahim2019kolmogorov,
    title={Kolmogorov-Arnold-Moser Theory and Symmetries for a Polynomial Quadratic Second Order Difference Equation},
    author={Ibrahim, Tarek F and Nurkanovi{\'c}, Zehra},
    journal={Mathematics},
    volume={7},
    number={9},
    pages={790},
    year={2019},
    publisher={Multidisciplinary Digital Publishing Institute}
    }
  • E. Duvnjaković, N. Okičić, and V. Pasic, “Cubic spline as global approximate solution of the semilinear reaction-diffusion problem.,” Journal of modern methods in numerical mathematics, vol. 10, 2019.
    [Bibtex]
    @article{duvnjakovic2019cubic,
    title={Cubic spline as global approximate solution of the semilinear reaction-diffusion problem.},
    author={Duvnjakovi{\'c}, Enes and Oki{\v{c}}i{\'c}, Nermin and Pasic, Vedad},
    journal={Journal of Modern Methods in Numerical Mathematics},
    volume={10},
    year={2019}
    }
  • S. Karasuljić, H. Zarin, and E. Duvnjaković, “A class of difference schemes uniformly convergent on a modified bakhvalov mesh,” Journal of modern methods in numerical mathematics, vol. 10:1-2, p. 16–35, 2019.
    [Bibtex]
    @article{karasuljic2018class,
    title={A class of difference schemes uniformly convergent on a modified Bakhvalov mesh},
    author={Karasulji{\'c}, Samir and Zarin, Helena and Duvnjakovi{\'c}, Enes},
    journal={Journal of Modern Methods in Numerical Mathematics},
    volume={10:1-2},
    pages={16--35},
    year={2019}
    }
  • E. Barakovic, V. Pasic, and others, “Black holes, gravitational waves and fundamental physics: a roadmap,” Classical and quantum gravity, vol. 36, iss. 14, p. 143001, 2019.
    [Bibtex]
    @article{barack2019black,
    title={Black holes, gravitational waves and fundamental physics: a roadmap},
    author={Barakovic, Elvis and Pasic, Vedad and others},
    journal={Classical and quantum gravity},
    volume={36},
    number={14},
    pages={143001},
    year={2019},
    publisher={IOP Publishing}
    }
  • M. Garic-Demirovic, S. Hrustic, and M. Nurkanovic, “Stability and periodicity of certain homogeneous second-order fractional difference equations with quadratic terms,” Advances in dynamical systems and applications, vol. 14, iss. 2, p. 149–178, 2019.
    [Bibtex]
    @article{garic2019stability,
    title={Stability and Periodicity of Certain Homogeneous Second-Order Fractional Difference Equations with Quadratic Terms},
    author={Garic-Demirovic, Mirela and Hrustic, Sabina and Nurkanovic, Mehmed},
    journal={Advances in Dynamical Systems and Applications},
    volume={14},
    number={2},
    pages={149--178},
    year={2019}
    }
  • R. Vugdalić and S. Halilović, “Cosine operator functions in $\mathbb{R}^2$.,” Gulf J. Math., vol. 7, iss. 1, p. 29–44, 2019.
    [Bibtex]
    @article{zbMATH07070461,
    Author = {Ramiz {Vugdali\'c} and Sanela {Halilovi\'c}},
    Title = {{Cosine operator functions in $\mathbb{R}^2$.}},
    FJournal = {{Gulf Journal of Mathematics}},
    Journal = {{Gulf J. Math.}},
    ISSN = {2309-4966/e},
    Volume = {7},
    Number = {1},
    Pages = {29--44},
    Year = {2019},
    Publisher = {Canadian University of Dubai, Dubai (UAE)},
    Language = {English},
    MSC2010 = {15A24 47D09}
    }
  • S. HRUSTIC, M. KULENOVIC, S. MORANJKIC, and Z. NURKANOVIC, “Global dynamics of perturbation of certain rational difference equation,” Turkish journal of mathematics, vol. 43, iss. 2, p. 894–915, 2019.
    [Bibtex]
    @article{hrustic2019global,
    title={Global dynamics of perturbation of certain rational difference equation},
    author={HRUSTIC, SABINA and KULENOVIC, MUSTAFA and MORANJKIC, SAMRA and NURKANOVIC, ZEHRA},
    journal={Turkish Journal of Mathematics},
    volume={43},
    number={2},
    pages={894--915},
    year={2019},
    publisher={The Scientific and Technological Research Council of Turkey}
    }

2018

  • M. R. Kulenovic, S. Moranjkic, M. Nurkanovic, and Z. Nurkanovic, “Global asymptotic stability and Naimark-Sacker bifurcation of certain mix monotone difference equation,” Discrete dynamics in nature and society, vol. 2018, 2018.
    [Bibtex]
    @article{kulenovic2018global,
    title={Global Asymptotic Stability and {N}aimark-{S}acker Bifurcation of Certain Mix Monotone Difference Equation},
    author={Kulenovic, Mustafa RS and Moranjkic, S and Nurkanovic, M and Nurkanovic, Z},
    journal={Discrete Dynamics in Nature and Society},
    volume={2018},
    year={2018},
    publisher={Hindawi}
    }
  • S. Karasuljic, E. Duvnjakovic, and E. Memic, “Uniformly convergent difference scheme for a semilinear reaction-diffusion problem on a Shishkin mesh,” Advances in mathematics: scientific journal, vol. 7, iss. 1, p. 23–38, 2018.
    [Bibtex]
    @article{karasuljic2018uniformly,
    author={Karasuljic, Samir and Duvnjakovic, Enes and Memic, Elvir},
    title={Uniformly Convergent Difference Scheme for a Semilinear Reaction-Diffusion Problem on a {S}hishkin Mesh},
    journal={Advances in Mathematics: Scientific Journal},
    volume={7},
    number={1},
    year={2018},
    pages={23--38},
    url={http://research-publication.com/articles/AMSJ/2018/AMSJ-2018-N1-4.pdf},
    }
  • S. Sadikovic, “Determination of a jump by conjugate Fourier-Jacobi series,” Filomat, vol. 32, iss. 8, 2018.
    [Bibtex]
    @article{sadikovic2018determination,
    title={Determination of a jump by conjugate {F}ourier-{J}acobi series},
    author={Sadikovic, Samra},
    journal={FILOMAT},
    volume={32},
    number={8},
    year={2018}
    }
  • S. Halilovic and S. Sadikovic, “The point and Rhodius spectra of certain nonlinear superposition operators,” Advances in mathematics, vol. 1, 2018.
    [Bibtex]
    @article{halilovic2018point,
    title={THE POINT AND {R}HODIUS SPECTRA OF CERTAIN NONLINEAR SUPERPOSITION OPERATORS},
    author={Halilovic, Sanela and Sadikovic, Samra},
    journal={Advances in Mathematics},
    volume={1},
    year={2018}
    }
  • S. Sadikovic and S. Halilovic, “Some properties of the conjugate Fourier-Jacobi and Fourier-Chebyshev series,” Adv. Math., Sci. J., vol. 7, iss. 2, pp. 57-64, 2018.
    [Bibtex]
    @article{halilovic2018some,
    Author = {Samra Sadikovic and Sanela Halilovic},
    Title = {{Some properties of the conjugate {F}ourier-{J}acobi and {F}ourier-{C}hebyshev series}},
    FJournal = {{Advances in Mathematics. Scientific Journal}},
    Journal = {{Adv. Math., Sci. J.}},
    ISSN = {1857-8365; 1857-8438/e},
    Volume = {7},
    Number = {2},
    Pages = {57-64},
    Year = {2018},
    }
  • S. Halilovic and S. Sadikovic, “The Neuberger spectrum of a certain superposition operator,” Adv. Math., Sci. J., vol. 7, iss. 2, pp. 83-88, 2018.
    [Bibtex]
    @article{halilovic2018some,
    Author = {Halilovic, Sanela and Sadikovic, Samra},
    Title = {{The {N}euberger spectrum of a certain superposition operator}},
    FJournal = {{Advances in Mathematics. Scientific Journal}},
    Journal = {{Adv. Math., Sci. J.}},
    ISSN = {1857-8365; 1857-8438/e},
    Volume = {7},
    Number = {2},
    Pages = {83-88},
    Year = {2018},
    }
  • S. Kalabusic, M. Nurkanovic, and Z. Nurkanovic, “Global dynamics of certain mix monotone difference equation,” Mathematics, vol. 6, iss. 1, p. 10, 2018.
    [Bibtex]
    @article{kalabuvsic2018global,
    title={Global dynamics of certain mix monotone difference equation},
    author={Kalabusic, Senada and Nurkanovic, Mehmed and Nurkanovic, Zehra},
    journal={Mathematics},
    volume={6},
    number={1},
    pages={10},
    year={2018},
    publisher={Multidisciplinary Digital Publishing Institute}
    }
  • T. Bazdalic, V. Ramaj, S. Resic, and M. Omerovic, “Internet among students–from mathematical rationality to unreality,” Human: journal for interdisciplinary studies, vol. 8, iss. 1, 2018.
    [Bibtex]
    @article{bazdalic2018internet,
    title={INTERNET AMONG STUDENTS--FROM MATHEMATICAL RATIONALITY TO UNREALITY},
    author={Bazdalic, Tarik and Ramaj, Vehbi and Resic, Sead and Omerovic, Maid},
    journal={Human: Journal for Interdisciplinary Studies},
    volume={8},
    number={1},
    year={2018}
    }

2017

  • S. Moranjkic and Z. Nurkanovic, “Local and global dynamics of certain second-order rational difference equations containing quadratic terms,” Adv. dyn. syst. appl, vol. 12, p. 123–157, 2017.
    [Bibtex]
    @article{moranjkic2017local,
    title={Local and Global Dynamics of Certain Second-Order Rational Difference Equations Containing Quadratic Terms},
    author={Moranjkic, Samra and Nurkanovic, Zehra},
    journal={Adv. Dyn. Syst. Appl},
    volume={12},
    pages={123--157},
    year={2017}
    }
  • M. Kulenovic, S. Moranjkic, and Z. Nurkanovic, “Naimark-Sacker bifurcation of second order rational difference equation with quadratic terms,” J. nonlinear sci. appl, vol. 10, p. 3477–3489, 2017.
    [Bibtex]
    @article{kulenovic2017naimark,
    title={Naimark-{S}acker bifurcation of second order rational difference equation with quadratic terms},
    author={Kulenovic, MRS and Moranjkic, S and Nurkanovic, Z},
    journal={J. Nonlinear Sci. Appl},
    volume={10},
    pages={3477--3489},
    year={2017}
    }
  • E. Barakovic and V. Pasic, “Physical interpretation of pp-waves with axial torsion,” 14th Marcel Grossmann meeting on general relativity, 2017.
    [Bibtex]
    @article{barakovic2017physical,
    title={Physical interpretation of pp-waves with axial torsion},
    author={Barakovic, Elvis and Pasic, Vedad},
    journal={14th {M}arcel {G}rossmann Meeting on General Relativity},
    year={2017}
    }
  • V. Pasic and E. Barakovic, “Axial torsion waves in metric-affine gravity,” 14th Marcel Grossmann meeting on general relativity, 2017.
    [Bibtex]
    @article{pasic2017axial,
    title={Axial torsion waves in metric-affine gravity},
    author={Pasic, Vedad and Barakovic, Elvis},
    journal={14th {M}arcel {G}rossmann Meeting on General Relativity},
    year={2017}
    }
  • S. Karasuljic, E. Duvnjakovic, V. Pasic, and E. Barakovic, “Construction of a global solution for the one dimensional singularly–perturbed boundary value problem,” Journal of modern methods in numerical mathematics, vol. 8, iss. 1–2, p. 52–65, 2017.
    [Bibtex]
    @article{karasuljic2017global,
    author={Karasuljic, Samir and Duvnjakovic, Enes and Pasic, Vedad and Barakovic, Elvis},
    title={Construction of a global solution for the one dimensional singularly--perturbed boundary value problem },
    journal={Journal of Modern Methods in Numerical Mathematics},
    volume={8},
    number={1--2},
    year={2017},
    pages={52--65}
    }
  • S. Halilovic and R. Vugdalic, “The spectra of certain nonlinear superposition operators in the spaces of sequences,” Gulf journal of mathematics, vol. 5, iss. 2, p. 20–30, 2017.
    [Bibtex]
    @article{halilovic2017spectra,
    title={The spectra of certain nonlinear superposition operators in the spaces of sequences},
    author={Halilovic, Sanela and Vugdalic, Ramiz},
    journal={Gulf Journal of Mathematics},
    volume={5},
    number={2},
    pages={20--30},
    year={2017}
    }
  • R. Vugdalic and S. Halilovic, “On general cosine operator function in Banach space.,” Adv. Math., Sci. J., vol. 6, iss. 1, p. 23–27, 2017.
    [Bibtex]
    @article{vugdalic2017general,
    Author = {Ramiz Vugdalic and Sanela Halilovic},
    Title = {{On general cosine operator function in {B}anach space.}},
    FJournal = {{Advances in Mathematics. Scientific Journal}},
    Journal = {{Adv. Math., Sci. J.}},
    ISSN = {1857-8365; 1857-8438/e},
    Volume = {6},
    Number = {1},
    Pages = {23--27},
    Year = {2017},
    Publisher = {Saints Cyril and Methodius University (Universitetot ``Sv. Kiril i Metodij"), Skopje},
    Language = {English},
    MSC2010 = {47D09 39B22 39B42}
    }
  • M. Garic-Demirovic, M. Nurkanovic, and Z. Nurkanovic, “Stability, periodicity and Neimark–Sacker bifurcation of certain homogeneous fractional difference equations,” Int. j. differ. equ, vol. 12, p. 27–53, 2017.
    [Bibtex]
    @article{garic2017stability,
    title={Stability, Periodicity and {N}eimark--{S}acker Bifurcation of Certain Homogeneous Fractional Difference Equations},
    author={Garic-Demirovic, Mirela and Nurkanovic, Mehmed and Nurkanovic, Zehra},
    journal={Int. J. Differ. Equ},
    volume={12},
    pages={27--53},
    year={2017}
    }

2016

  • A. Rekic-Vukovic, N. Okicic, V. Pasic, and I. Arandjelovic, “Continuity of modulus of noncompact convexity for minimalizable measures of noncompactness,” Functional analysis, vol. 7, iss. 3, p. 39–46, 2016.
    [Bibtex]
    @article{rekic2016continuity,
    title={Continuity of modulus of noncompact convexity for minimalizable measures of noncompactness},
    author={Rekic-Vukovic, Amra and Okicic, Nermin and Pasic, Vedad and Arandjelovic, Ivan},
    journal={Functional Analysis},
    volume={7},
    number={3},
    pages={39--46},
    year={2016}
    }
  • M. Kulenovic, S. Moranjkic, and Z. Nurkanovic, “Global dynamics and bifurcation of a perturbed Sigmoid Beverton–Holt difference equation,” Mathematical methods in the applied sciences, vol. 39, iss. 10, p. 2696–2715, 2016.
    [Bibtex]
    @article{kulenovic2016global,
    title={Global dynamics and bifurcation of a perturbed {S}igmoid {B}everton--{H}olt difference equation},
    author={Kulenovic, MRS and Moranjkic, S and Nurkanovic, Z},
    journal={Mathematical Methods in the Applied Sciences},
    volume={39},
    number={10},
    pages={2696--2715},
    year={2016},
    publisher={Wiley Online Library}
    }
  • R. Vugdalic and S. Halilovic, “A formula for $n$-times integrated $C_0$ group of operators $(n \in \mathbb{N})$.,” Adv. Math., Sci. J., vol. 5, iss. 2, p. 161–166, 2016.
    [Bibtex]
    @article{vugdalic2016formula,
    Author = {Ramiz Vugdalic and Sanela Halilovic},
    Title = {{A formula for $n$-times integrated $C_0$ group of operators $(n \in \mathbb{N})$.}},
    FJournal = {{Advances in Mathematics. Scientific Journal}},
    Journal = {{Adv. Math., Sci. J.}},
    ISSN = {1857-8365; 1857-8438/e},
    Volume = {5},
    Number = {2},
    Pages = {161--166},
    Year = {2016},
    Publisher = {Saints Cyril and Methodius University (Universitetot ``Sv. Kiril i Metodij"), Skopje},
    Language = {English},
    MSC2010 = {47D03 47D62}
    }
  • M. Garic-Demirovic, M. Nurkanovic, and Z. Nurkanovic, “Stability, periodicity, and symmetries of certain second-order fractional difference equation with quadratic terms via kam theory,” Mathematical methods in the applied sciences, vol. 1, iss. 40, p. 306–318, 2016.
    [Bibtex]
    @article{garic2016stability,
    title={Stability, periodicity, and symmetries of certain second-order fractional difference equation with quadratic terms via KAM theory},
    author={Garic-Demirovic, Mirela and Nurkanovic, M and Nurkanovic, Z},
    journal={Mathematical Methods in the Applied Sciences},
    volume={1},
    number={40},
    pages={306--318},
    year={2016}
    }
  • S. J. Hrustic, M. Kulenovic, and M. Nurkanovic, “Global dynamics and bifurcations of certain second order rational difference equation with quadratic terms,” Qualitative theory of dynamical systems, vol. 15, iss. 1, p. 283–307, 2016.
    [Bibtex]
    @article{hrustic2016global,
    title={Global dynamics and bifurcations of certain second order rational difference equation with quadratic terms},
    author={Hrustic, Sabina Jasarevic and Kulenovic, MRS and Nurkanovic, M},
    journal={Qualitative theory of dynamical systems},
    volume={15},
    number={1},
    pages={283--307},
    year={2016},
    publisher={Springer}
    }
  • J. S. Hrustic, M. Kulenovic, and M. Nurkanovic, “Local dynamics and global stability of certain second-order rational difference equation with quadratic terms,” Discrete dynamics in nature and society, vol. 2016, 2016.
    [Bibtex]
    @article{hrustic2016local,
    title={Local dynamics and global stability of certain second-order rational difference equation with quadratic terms},
    author={Hrustic, S Jasarevic and Kulenovic, MRS and Nurkanovic, M},
    journal={Discrete Dynamics in Nature and Society},
    volume={2016},
    year={2016},
    publisher={Hindawi}
    }
  • M. Nurkanovic and Z. Nurkanovic, “Birkhoff normal forms, kam theory, periodicity and symmetries for certain rational difference equation with cubic terms,” , 2016.
    [Bibtex]
    @article{nurkanovic2016birkhoff,
    title={BIRKHOFF NORMAL FORMS, KAM THEORY, PERIODICITY AND SYMMETRIES FOR CERTAIN RATIONAL DIFFERENCE EQUATION WITH CUBIC TERMS},
    author={Nurkanovic, Mehmed and Nurkanovic, Zehra},
    year={2016}
    }
  • R. Vugdalic, “Integrated semigroups and once integrated group of rotation in the complex plane.,” Adv. Math., Sci. J., vol. 5, iss. 2, p. 123–129, 2016.
    [Bibtex]
    @Article{vugdalic2016integrated,
    Author = {Ramiz Vugdalic},
    Title = {{Integrated semigroups and once integrated group of rotation in the complex plane.}},
    FJournal = {{Advances in Mathematics. Scientific Journal}},
    Journal = {{Adv. Math., Sci. J.}},
    ISSN = {1857-8365; 1857-8438/e},
    Volume = {5},
    Number = {2},
    Pages = {123--129},
    Year = {2016},
    Publisher = {Saints Cyril and Methodius University (Universitetot ``Sv. Kiril i Metodij"), Skopje},
    Language = {English},
    MSC2010 = {47D62 47D03}
    }

2015

  • A. Rekic-Vukovic, N. Okicic, and E. Duvnjakoc, “On weightedBanach sequance spaces,” Advances in mathematics, iss. 2, p. 127–138, 2015.
    [Bibtex]
    @article{rekic2015weighted,
    title={On weighted{B}anach sequance spaces},
    author={Rekic-Vukovic, Amra and Okicic, Nermin and Duvnjakoc, Enes},
    journal={Advances in Mathematics},
    number={2},
    pages={127--138},
    year={2015}
    }
  • [PDF] V. Pasic and E. Barakovic, “Torsion wave solutions in Yang-Mielke theory of gravity,” Advances in high energy physics, vol. 2015, 2015.
    [Bibtex]
    @article{pasic2015torsion,
    title={Torsion wave solutions in {Y}ang-{M}ielke theory of gravity},
    author={Pasic, Vedad and Barakovic, Elvis},
    journal={Advances in High Energy Physics},
    volume={2015},
    year={2015},
    publisher={Hindawi}
    }
  • S. Karasuljic, E. Duvnjakovic, and H. Zarin, “Uniformly convergent difference scheme for a semilinear reaction-diffusion problem,” Advances in mathematics: scientific journal, vol. 4, iss. 2, p. 139–159, 2015.
    [Bibtex]
    @article{karasuljic2015uniformly,
    author={Karasuljic, Samir and Duvnjakovic, Enes and Zarin, Helena},
    title={Uniformly convergent difference scheme for a semilinear reaction-diffusion problem},
    journal={Advances in Mathematics: Scientific Journal},
    volume={4},
    number={2},
    year={2015},
    pages={139--159},
    url={http://research-publication.com/articles/AMSJ/2015/AMSJ-2015-N2-6.pdf}
    }
  • E. Duvnjakovic, S. Karasuljic, V. Pasic, and H. Zarin, “A uniformly convergent difference scheme on a modified Shishkin mesh for the singularly perturbed reaction-diffusion boundary value problem,” Journal of modern methods in numerical mathematics, vol. 6, iss. 1, pp. 28-43, 2015.
    [Bibtex]
    @article{karasuljic2015uniformlyconvergent,
    author={Duvnjakovic, Enes and Karasuljic, Samir and Pasic, Vedad and Zarin, Helena},
    title={A uniformly convergent difference scheme on a modified {S}hishkin mesh for the singularly perturbed reaction-diffusion boundary value problem},
    year={2015},
    journal={Journal of Modern Methods in Numerical Mathematics},
    volume={6},
    number={1},
    pages={28-43},
    url={http://www.m-sciences.com/index.php?journal=jmmnm&page=issue&op=view&path[]=72}
    }
  • M. Garic-Demirovic, M. Kulenovic, and M. Nurkanovic, “Basins of attraction of certain homogeneous second order quadratic fractional difference equation,” J. concr. appl. math, vol. 13, iss. 1-2, p. 35–50, 2015.
    [Bibtex]
    @article{garic2015basins,
    title={Basins of Attraction of Certain Homogeneous Second Order Quadratic Fractional Difference Equation},
    author={Garic-Demirovic, M and Kulenovic, MRS and Nurkanovic, M},
    journal={J. Concr. Appl. Math},
    volume={13},
    number={1-2},
    pages={35--50},
    year={2015}
    }
  • S. Jašarević-Hrustić, Z. Nurkanović, M. R. Kulenović, and E. Pilav, “Birkhoff normal forms, KAM theory and symmetries for certain second order rational difference equation with quadratic term,” , 2015.
    [Bibtex]
    @article{javsarevic2015birkhoff,
    title={Birkhoff normal forms, {KAM} theory and symmetries for certain second order rational difference equation with quadratic term},
    author={Ja{\v{s}}arevi{\'c}-Hrusti{\'c}, Sabina and Nurkanovi{\'c}, Zehra and Kulenovi{\'c}, Mustafa RS and Pilav, Esmir},
    year={2015}
    }

2014

  • S. Halilovic and R. Vugdalic, “The rhodius spectra of some nonlinear superposition operators in the spaces of sequences,” Adv. math., sci. j, vol. 3, iss. 2, p. 83–96, 2014.
    [Bibtex]
    @article{halilovic2014rhodius,
    title={The rhodius spectra of some nonlinear superposition operators in the spaces of sequences},
    author={Halilovic, S and Vugdalic, R},
    journal={Adv. Math., Sci. J},
    volume={3},
    number={2},
    pages={83--96},
    year={2014}
    }
  • A. Rekic-Vukovic, N. Okicic, and I. Arandjelovic, “On modulus of noncompact convexity for a strictly minimalizable measure of noncompactness,” Gulf journal of mathematics, vol. 2, iss. 3, p. 38–45, 2014.
    [Bibtex]
    @article{rekic2014modulus,
    title={On modulus of noncompact convexity for a strictly minimalizable measure of noncompactness},
    author={Rekic-Vukovic, Amra and Okicic, Nermin and Arandjelovic, Ivan},
    journal={Gulf Journal of Mathematics},
    volume={2},
    number={3},
    pages={38--45},
    year={2014}
    }
  • [PDF] V. Pasic and E. Barakovic, “Pp-waves with torsion: a metric-affine model for the massless neutrino,” General relativity and gravitation, vol. 46, iss. 10, p. 1787, 2014.
    [Bibtex]
    @article{pasic2014pp,
    title={PP-waves with torsion: a metric-affine model for the massless neutrino},
    author={Pasic, Vedad and Barakovic, Elvis},
    journal={General Relativity and Gravitation},
    volume={46},
    number={10},
    pages={1787},
    year={2014},
    publisher={Springer}
    }
  • [PDF] V. Pasic, E. Barakovic, and N. Okicic, “A new representation of the field equations of quadratic metric affine gravity,” Advances in mathematics, iss. 1, p. 33–46, 2014.
    [Bibtex]
    @article{pasic2014new,
    title={A NEW REPRESENTATION OF THE FIELD EQUATIONS OF QUADRATIC METRIC AFFINE GRAVITY},
    author={Pasic, Vedad and Barakovic, Elvis and Okicic, Nermin},
    journal={Advances in Mathematics},
    number={1},
    pages={33--46},
    year={2014}
    }
  • S. Halilovic and R. Vugdalic, “The Neuberger spectra of nonlinear superposition operators in the spaces of sequences,” J. int. math. virtual inst, vol. 4, p. 97–119, 2014.
    [Bibtex]
    @article{halilovic2014neuberger,
    title={The {N}euberger Spectra of Nonlinear Superposition Operators in the Spaces of Sequences},
    author={Halilovic, Sanela and Vugdalic, Ramiz},
    journal={J. Int. Math. Virtual Inst},
    volume={4},
    pages={97--119},
    year={2014}
    }
  • M. R. Kulenović, Z. Nurkanović, and E. Pilav, “Birkhoff normal forms and KAM theory for Gumowski-Mira equation,” The scientific world journal, vol. 2014, 2014.
    [Bibtex]
    @article{kulenovic2014birkhoff,
    title={Birkhoff normal forms and {KAM} theory for {G}umowski-{M}ira equation},
    author={Kulenovi{\'c}, Mustafa RS and Nurkanovi{\'c}, Zehra and Pilav, Esmir},
    journal={The Scientific World Journal},
    volume={2014},
    year={2014},
    publisher={Hindawi}
    }
  • S. Jašarević and M. Kulenović, “Basins of attraction of equilibrium and boundary points of second-order difference equations,” Journal of difference equations and applications, vol. 20, iss. 5-6, p. 947–959, 2014.
    [Bibtex]
    @article{jasarevic2014basins,
    title={Basins of attraction of equilibrium and boundary points of second-order difference equations},
    author={Ja{\v{s}}arevi{\'c}, S and Kulenovi{\'c}, MRS},
    journal={Journal of Difference Equations and Applications},
    volume={20},
    number={5-6},
    pages={947--959},
    year={2014},
    publisher={Taylor and Francis Ltd}
    }
  • F. Destovic, R. Vugdalic, and I. Kalco, “Fokker-Planck equation as a result of connections Maxwell field equations with some stationary processes.,” Bull. Int. Math. Virtual Inst., vol. 4, iss. 1, p. 11–15, 2014.
    [Bibtex]
    @Article{vugdalic2014fokker,
    Author = {Fatih Destovic and Ramiz Vugdalic and Ismet Kalco},
    Title = {{Fokker-Planck equation as a result of connections Maxwell field equations with some stationary processes.}},
    FJournal = {{Bulletin of the International Mathematical Virtual Institute}},
    Journal = {{Bull. Int. Math. Virtual Inst.}},
    ISSN = {2303-4874; 1840-4367; 2303-4955/e},
    Volume = {4},
    Number = {1},
    Pages = {11--15},
    Year = {2014},
    Publisher = {International Mathematical Virtual Institute (IMVI), Banja Luka},
    Language = {English},
    MSC2010 = {35Q84 35Q61 60J25}
    }

2013

  • S. Piric, “Determination of jumps of a function of $V_P$ class by its integrated Fourier-Jacobi series,” Advances in mathematics: scientific journal, vol. 2, iss. 1, p. 17–24, 2013.
    [Bibtex]
    @article{piric2013determination,
    title={DETERMINATION OF JUMPS OF A FUNCTION OF $V_P$ CLASS BY ITS INTEGRATED {F}OURIER-{J}ACOBI SERIES},
    author={Piric, Samra},
    journal={Advances in Mathematics: Scientific Journal},
    volume={2},
    number={1},
    pages={17--24},
    year={2013},
    publisher={Research Publication}
    }
  • M. Garić-Demirović, M. R. Kulenović, and M. Nurkanović, “Global dynamics of certain homogeneous second-order quadratic fractional difference equation,” The scientific world journal, vol. 2013, 2013.
    [Bibtex]
    @article{garic2013global,
    title={Global dynamics of certain homogeneous second-order quadratic fractional difference equation},
    author={Gari{\'c}-Demirovi{\'c}, M and Kulenovi{\'c}, Mustafa RS and Nurkanovi{\'c}, M},
    journal={The Scientific World Journal},
    volume={2013},
    year={2013},
    publisher={Hindawi}
    }

2012

  • S. Moranjkic and Z. Nurkanovic, “Basins of attraction of certain rational anti-competitive system of difference equations in the plane,” Advances in difference equations, vol. 2012, iss. 1, p. 153, 2012.
    [Bibtex]
    @article{moranjkic2012basins,
    title={Basins of attraction of certain rational anti-competitive system of difference equations in the plane},
    author={Moranjkic, Samra and Nurkanovic, Zehra},
    journal={Advances in Difference Equations},
    volume={2012},
    number={1},
    pages={153},
    year={2012},
    publisher={Springer}
    }
  • F. Dedagic, S. Halilovic, and E. Barakovic, “On the solvability of discrete nonlinear Hammerstein systems in $l_{p,\sigma}$ spaces,” Mathematica balkanica, vol. 26, p. 3–4, 2012.
    [Bibtex]
    @article{dedagic26solvability,
    title={On the solvability of discrete nonlinear {H}ammerstein systems in $l_{p,\sigma}$ spaces},
    author={Dedagic, Fehim and Halilovic, Sanela and Barakovic, Elvis},
    journal={Mathematica Balkanica},
    year={2012},
    volume={26},
    pages={3--4}
    }
  • M. Garić-Demirović, M. Kulenović, and M. Nurkanović, “Basins of attraction of equilibrium points of second order difference equations,” Applied mathematics letters, vol. 25, iss. 12, p. 2110–2115, 2012.
    [Bibtex]
    @article{garic2012basins,
    title={Basins of attraction of equilibrium points of second order difference equations},
    author={Gari{\'c}-Demirovi{\'c}, M and Kulenovi{\'c}, MRS and Nurkanovi{\'c}, M},
    journal={Applied Mathematics Letters},
    volume={25},
    number={12},
    pages={2110--2115},
    year={2012},
    publisher={Elsevier}
    }
  • M. Kulenović, O. Merino, and M. Nurkanović, “Global dynamics of certain competitive system in the plane,” Journal of difference equations and applications, vol. 18, iss. 12, p. 1951–1966, 2012.
    [Bibtex]
    @article{kulenovic2012global,
    title={Global dynamics of certain competitive system in the plane},
    author={Kulenovi{\'c}, MRS and Merino, Orlando and Nurkanovi{\'c}, M},
    journal={Journal of Difference Equations and Applications},
    volume={18},
    number={12},
    pages={1951--1966},
    year={2012},
    publisher={Taylor \& Francis}
    }
  • M. Kulenović and M. Nurkanović, “Global behavior of a two-dimensional competitive system of difference equations with stocking,” Mathematical and computer modelling, vol. 55, iss. 7-8, p. 1998–2011, 2012.
    [Bibtex]
    @article{kulenovic2012global,
    title={Global behavior of a two-dimensional competitive system of difference equations with stocking},
    author={Kulenovi{\'c}, MRS and Nurkanovi{\'c}, M},
    journal={Mathematical and Computer Modelling},
    volume={55},
    number={7-8},
    pages={1998--2011},
    year={2012},
    publisher={Elsevier}
    }
  • M. Nurkanovic and Z. Nurkanovic, “Basins of attraction of an anti-competitive discrete rational system,” Sarajevo j. math, vol. 8, iss. 21, p. 273–282, 2012.
    [Bibtex]
    @article{nurkanovic2012basins,
    title={Basins of attraction of an anti-competitive discrete rational system},
    author={Nurkanovic, M and Nurkanovic, Z},
    journal={Sarajevo J. Math},
    volume={8},
    number={21},
    pages={273--282},
    year={2012}
    }
  • M. Kulenovic and M. Nurkanovic, “Basins of attraction of an anti-competitive system of difference equations in the plane,” Communications on applied nonlinear analysis, vol. 19, iss. 2, p. 41, 2012.
    [Bibtex]
    @article{kulenovic2012basins,
    title={Basins of attraction of an anti-competitive system of difference equations in the plane},
    author={Kulenovic, MRS and Nurkanovic, M},
    journal={Communications on Applied Nonlinear Analysis},
    volume={19},
    number={2},
    pages={41},
    year={2012}
    }
  • R. Vugdalic and F. Destovic, “About functional equation $f(st)=f(s)+f(t)$ ($s,t\in\mathbb R\setminus\{0\})$.,” Bull. Int. Math. Virtual Inst., vol. 2, iss. 2, p. 235–237, 2012.
    [Bibtex]
    @Article{vugdalic2012about,
    Author = {Ramiz Vugdalic and Fatih Destovic},
    Title = {{About functional equation $f(st)=f(s)+f(t)$ ($s,t\in\mathbb R\setminus\{0\})$.}},
    FJournal = {{Bulletin of the International Mathematical Virtual Institute}},
    Journal = {{Bull. Int. Math. Virtual Inst.}},
    ISSN = {2303-4874; 1840-4367; 2303-4955/e},
    Volume = {2},
    Number = {2},
    Pages = {235--237},
    Year = {2012},
    Publisher = {International Mathematical Virtual Institute (IMVI), Banja Luka},
    Language = {English},
    MSC2010 = {39B22 30D05}
    }

2011

  • E. Duvnjakovic and S. Karasuljic, “Difference scheme for semilinear reaction-diffusion problem on a mesh of Bakhvalov type,” Mathematica balkanica, vol. 25, Fasc. 5, p. 499–504, 2011.
    [Bibtex]
    @article{karasuljic2011scheme,
    author = { Duvnjakovic, Enes and Karasuljic, Samir},
    title = {Difference Scheme for Semilinear Reaction-Diffusion Problem on a Mesh of {B}akhvalov Type},
    journal = {Mathematica Balkanica},
    volume = {25, Fasc. 5},
    pages ={499--504},
    year = {2011},
    url={http://www.mathbalkanica.info/toc/siteCONT25-5.pdf}
    }
  • S. Piric and Z. Sabanac, “Cesaro summability in some orthogonal systems,” Math. balkanica (ns), vol. 25, p. 519–526, 2011.
    [Bibtex]
    @article{piric2011cesaro,
    title={Cesaro Summability in Some Orthogonal Systems},
    author={Piric, Samra and Sabanac, Zenan},
    journal={Math. Balkanica (NS)},
    volume={25},
    pages={519--526},
    year={2011}
    }
  • M. Garic-Demirovic and M. Nurkanovic, “Dynamics of an anti-competitive two dimensional rational system of difference equations,” Sarajevo j. math, vol. 7, iss. 19, p. 39–56, 2011.
    [Bibtex]
    @article{garic2011dynamics,
    title={Dynamics of an anti-competitive two dimensional rational system of difference equations},
    author={Garic-Demirovic, M and Nurkanovic, M},
    journal={Sarajevo J. Math},
    volume={7},
    number={19},
    pages={39--56},
    year={2011}
    }

2010

  • E. Duvnjakovic, S. Karasuljic, and N. Okicic, “Difference scheme for semilinear reaction-diffusion problem,” 14th international research/expert conference trends in the development of machinery and associated technology tmt 2010, 7. mediterranean cruise, p. 793–796, 2010.
    [Bibtex]
    @article{karasuljic2010scheme,
    author = {Duvnjakovic, Enes and Karasuljic, Samir and Okicic, Nermin},
    title = "{Difference scheme for semilinear reaction-diffusion problem}",
    journal= {14th International Research/Expert Conference Trends in the Development of Machinery
    and Associated Technology TMT 2010, 7. Mediterranean Cruise },
    year = {2010},
    pages = {793--796}
    }
  • S. Halilovic, “Nonlinear spectral theories and solvability of nonlinear Hammerstein equations,” Mathematica balkanica, vol. 24, p. 321–327, 2010.
    [Bibtex]
    @article{halilovic2010nonlinear,
    title={Nonlinear spectral theories and solvability of nonlinear {H}ammerstein equations},
    author={Halilovic, Sanela},
    journal={Mathematica Balkanica},
    year={2010},
    volume={24},
    pages={321--327},
    year={2010}
    }
  • D. Burgić and M. Nurkanović, “The rational system of nonlinear difference equations in the modeling competitive populations.”
    [Bibtex]
    @article{burgicrational,
    title={THE RATIONAL SYSTEM OF NONLINEAR DIFFERENCE EQUATIONS IN THE MODELING COMPETITIVE POPULATIONS},
    author={Burgi{\'c}, D{\v{z}}evad and Nurkanovi{\'c}, Mehmed}
    }